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Table 1. Minimal balance surfaces built up from branched catenoids 

Minimal 
balance Group-subgroup 
surface pair Genus Point group 

BC 1 P6322- P63 9 3.. 3 + 9: 

BC 2 P42/nnm- P4 z n m 7 2. m m 4 + 8: 

BC3 I 4 2 2 - I 4  6 4.. 4 +  12: 

Surface patches Number of 
equivalent 

Generating circuits surfaces Transformations 
000,100, 2~  ~ ~7~ 1 1 0 / ~ a ,  00a, ~ ~a, 4 m(xyO); m(2x, x, z); 

2!!  10! ,Z! 2!!  11 l- !2! 2(2X, X,Z) 
3 3 4 ,  J ~ 4 ,  ~ 3 4 ,  3 3 4 ,  't 't4, 3 3 4  

2v4-tn!, vzn!!4, T,~oa, 0t ~/000, I00, 4 m(xy¼); m(Oyz); 

-',Io, 010, ooo, Ioo, ' '~ ~o, o½o 2(Oyl) 
lal all Y I 71 II m(xy~); m(Oyz); ~v~, v~a, ~0a, 0~ a/000, ~ 0 ,  4 __ 
olo, ooo, ½'o, ½oo, 0,, ' '- ,,,,, ~ ~v, 2(0y~) 

1T 100 0~0, 000, ~ ~0, 

Informat ion  on the properties of  BC surfaces is 
summarized  in Table 1. In each case, for one of  the 
four equivalent  surfaces a pair  of  generat ing circuits 
is described by its vertices. Generat ing circuits for 
the other three surfaces may be calculated with the 
aid of the symmetry  operat ions listed in the last 
column. 

Minimal surfaces of  the families BC1, BC2 and 
BC3 are not complementary  to surfaces of  other  
families described so far. In a subsequent  paper ,  
however,  a family of  minimal surfaces complemen-  
tary to the BC2 surfaces will be presented.  
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A b s t r a c t  

Eight new families of  minimal  balance surfaces are 
described. Their  surface patches belong to a new kind, 
called multiple catenoids.  The generat ing circuits of  
such a minimal  surface are two congruent  concave 
polygons with one point of  self-contact each. The 
new minimal balance surfaces are complementary  to 
other minimal balance surfaces which are built up 
from catenoid-like surface patches and have been 
known before.  

1. I n t r o d u c t i o n  

The symmetry  of  each minimal  balance surface can 
be described by a g roup - subg roup  pair  G = H of 
space groups with index 2, its inherent  symmetry.  The 
fixed points of  all symmetry  operat ions s with s ~ G 
but s ~ H are necessarily contained within the surface 

(Fischer & Koch,  1987). Most  of  the minimal balance 
surfaces described so far  have a l inear skeletal net, 
i.e. a set of  twofold axes defined by the corresponding 
space-group pair,  that  is embedded  within the surface 
(cf Schoen, 1970; Hyde & Andersson,  1984). Such a 
set of  twofold axes may be used to generate a minimal 
balance surface (cf  Fischer & Koch, 1987, 1989; Koch 
& Fischer, 1988). Then it is called a generat ing l inear 
net. 

As all sets of  twofold axes defined by space-group 
pairs with index 2 may be assigned to 52 cases (cf 
Koch & Fischer, 1988, Table 1) at most 52 types of  
generat ing l inear nets for minimal balance surfaces 
exist. Such a set of  twofold axes may be three- 
dimensional ly connected or not. Among  the discon- 
nected sets those ones stand out that disintegrate into 
parallel nets. 

If  all nets of  such a set are congruent  [cases 22 to 
30 in Table 1 of  Koch & Fischer (1988)] catenoid-like 
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surface patches may be constructed in most cases (22 
to 28). The corresponding minimal surfaces have been 
derived completely (Schwarz, 1890; Schoen, 1970; 
Koch & Fischer, 1988). If nets of two different kinds 
are stacked alternately within the same set of  twofold 
axes branched catenoids may be constructed. The 
three corresponding families of minimal surfaces are 
described by Fischer & Koch (1989). 

Within the present paper eight new families of 
minimal balance surfaces will be presented, the sur- 
face patches of which are multiple catenoids. 

2. Multiple catenoids 

Catenoid-like surface patches of minimal balance 
surfaces are bounded by two parallel congruent flat 
and convex polygons, branched catenoids by two 
different parallel flat polygons, one of which is convex 
whereas the other one is concave with one point of 
self-contact. 

A multiple catenoid may be imagined as resulting 
from fusion of n neighbouring catenoids. These n 
catenoids are bounded by two times n convex poly- 
gons that belong to a pair of adjacent nets of twofold 
axes. The n polygons within one of these nets share 
a common vertex. Accordingly, two parallel con- 
gruent flat and concave polygons may be formed with 
one point of self-contact each (cf. Figs. 1 to 9). These 
two concave polygons are the boundaries of a multi- 
ple catenoid. 

Multiple catenoids are compatible with all sets of 
congruent parallel nets of twofold axes stacked 
directly upon each other (cases 22 to 26). They are 
incompatible with sets of congruent nets where ver- 
tices of one net lie above the polygon centres of 
another net (cases 27 to 30) and with sets of parallel 
nets of two different kinds (cases 31 to 33). 

The triangular nets of twofold axes referring to 
cases 23 (46.12)  and 25 (482) contain inequivalent 
kinds of vertices. Accordingly, different types of 
multiple catenoids may be formed. 

same pair of adjacent n e t s  36 , are in parallel orienta- 
tion. Triple catenoids from different layers are 
oriented differently. The genus of an MC1 surface 
equals 7. 

Case 22 refers to group-subgroup "pairs G - H  of 
18 different types. Eight of them are incompatible 
with MC1 surfaces for the same reasons as they are 
incompatible with H surfaces (cf. Koch & Fischer, 
1988). For five of the other ten types the triangular 
nets are formed by axes .2. such that all vertices within 
a net are symmetrically equivalent. As a consequence, 
the combination of three triangles to a concave 9-gon 
is impossible without symmetry reduction. The 
remaining five t)1pes are P63/mcm-P62m, P6c2-P6, 
P6322-P321, P31m-P31m and P312-P3.  

Each set of twofold axes built up from triangular 
nets 36 may form the generating linear net of six 
congruent and complementary MC 1 surfaces. If any 
concave 9-gon has been chosen as the first boundary 
of a triple catenoid the second one may belong to the 
triangular net above or below. The corresponding two 
MC 1 surfaces show identical inherent symmetry. The 
central axes of their triple catenoids coincide. Both 
surfaces are mapped onto each other by a symmetry 
operation of the intersection group N~ (P63/mcm) n 
N~(P( )2m)=P6 /mmm(c /2 )  of the Euclidean nor- 
malizers of G and H, e.g. by a mirror reflection m.. 
(cf. Table 1, column 'Transformations') .  In addition, 
there exist two further possibilities to choose the 
central axes of the triple catenoids. Each of these 
choices refers to two other congruent MC1 surfaces 
and to another space-group pair P63/mcm-P62m 
which is shifted against the original one by a vector 
(2~0) or (~20) (cf. column 'Origin shifts' of Table 1). 

4. Minimal balance surfaces MC2, MC3 and MC4 
(double, triple and sextuple catenoids) 

Case 23 describes sets of twofold axes that disin- 
tegrate into triangular nets 46 .12  (angles 30, 60, 90°). 

3. Minimal balance surfaces M C I  (triple catenoids) 

Sets of twofold axes that disintegrate into parallel 
nets 3 6 of equilateral triangles belong to case 22. They 
allow the construction of triple catenoids with point 
symmetry ()2m bounded by two concave 9-gons (Fig. 
1). These triple catenoids are the surface patches for 
a family of minimal balance surfaces with inherent 
symmetry P63/mcm-P62m (cf. Table 1) designated 
MC 1. As the generating linear nets described above 
form also the linear skeletal nets of these surfaces, H 
surfaces (cf. Schoen, 1970; Koch & Fischer, 1988) 
and MC1 surfaces are complementary. 

Each MC1 surface consists of triple catenoids in 
two different orientations. All triple catenoids from 
the same layer, i.e. triple catenoids bounded by the 

Fig. 1. Triple catenoid, a surface patch of a minimal surface MC 1 
with symmetry P63/mcm-P62m. 
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Table  1. Minimal balance surfaces built up from multiple catenoids 

The coordinates of the vertices are given for one of the generating circuits only. Those of the second one result from adding 00~. Column 
'Transformations' refers to congruent complementary surfaces with identical inherent symmetry, column 'Origin shifts' to congruent 
complementary surfaces with different inherent symmetry. 

Surface patches 

MC2 P6/mcc-P6/m 4 6 . 1 2  13 2/m.. 2 m(x.~) 

MC3 P6/mcc-P6/m 4 6 . 1 2  13 &. 2 m(xy~) 

Minimal Group- Nets of Number of 
balance subgroup twofold Point congruent Origin 
surface pair axes Genus group Generating circuits surfaces Transformations shifts 

21 MCI P63/mcm-P62m 63 7 62m 9 + 9 :  000, ~ 0 ,  ~ 0 ,  000, ~ 0 ,  ~i" ~30, 3 x 2  m(xyO) 330;2~ 330~2 
T~ - 000, ~0.  ~i0 

6 + 6 :  ~_~_~_,~2~ 00 -~ , -~ ,  3'*, i Ill d, l l /  

' oo~,' ' ii-L 16, 1~,  9 + 9 :  ]- ~- ~., ~Oa, 
i 11~, I l l  

MC4 P6/mcc-P6/m 46 12 13 6/m.. 18+18:  00-~, I t 32-~--~,00-4, t t t  ~21 20a, ~ t a, 2 m(xyJ4) • 3 7,,, 

oo~-,o~-,~" ~ , ~ '  ~T, 

I I I l l  I1 MC5 P42/mcm-Cmmm 44 5 m.mm 8+8 :  00~, ~Oi, ~ ,  0)~, 2 x 4  m(xy~); t(-~O); 

ooL ~o~, ~-' o~ 

MC6 14/mcm-P4/mbm 482 9 m.mm 6 + 6 :  I~Oa,l ~ttt'~ i, 00~, i i ~t¢l~ 4, : ~ ,  10~- 2 m(xy~) 

MC7 P4/mcc-P4/m 482 9 4/m.. 12+12:  00~, '  ' ' ' ~ , 00 -4 ,~ -~ ,  ~ ' '  ~0~, 2 ~ ~ ~ ~, 4 m(xy~); t(~ ~0); 

ooL r '  - -L -L '~ '  20,, ~ 0oL o~ 22, .(xyb 

' ' '  ' L o~-L oMC5 Pccm-P2/m 4" 5 ..2/m 8+8: 00~-, 2%, 22 8 m(xy-~); t(~O); 
oo-~, r , --_,, o~  ~0~, ~ ~- n(xyb; t(~oo); 

a(xy~); t(O~O); 

b(xyb 

~00 

The corresponding g roup- subgroup  pairs belong to 
the types P6/mcc-P6/m,  P622-P6 ,  and P622-  
P622(2c).  Only  the first two of  these types are compat-  
ible with catenoid-l ike surface patches and with the 
corresponding min imal  ba lance  surfaces of  the family  
R3 (cf. Schoen, 1970; Koch  & Fischer, 1988). They 
are compat ib le  in addi t ion  with minimal  surfaces built  
up from mul t ip le  catenoids.  

As in a t r iangular  net 4 6 . 1 2  three kinds of  vertices 
exist shared by four, six and twelve triangles, respec- 
tively, three kinds of  mul t iple  catenoids may  be 
formed. Two triangles may  be combined  to a concave 
6-gon (with self-contact at the 90 ° vertex), three 
triangles to a concave 9-gon (with self-contact at the 
60 ° vertex), or six triangles to a concave 18-gon (with 
self-contact at the 30 ° vertex). Accordingly,  the fusion 
of  two, three or six catenoids results in a double ,  
triple or sextuple catenoid (cf. Figs. 2 to 5). The 
corresponding min imal  ba lance  surfaces are desig- 
nated MC2, MC3 and MC4, respectively. 

The double  catenoids of  an MC2 surface show six 
different orientations,  the triple catenoids of  an MC3 
surface four, and the sextuple catenoids of  an MC4 
surface two different orientations.  Mult iple  catenoids 
from adjacent  layers are always oriented differently; 
within a single layer three orientat ions occur for the 
double  catenoids,  two orientat ions for the triple 

catenoids and  one orientat ion only for the sextuple 
catenoids. 

The genus of  all these min imal  surfaces equals  13. 
Their  inherent  symmetry  is the same as for R3 sur- 
faces, namely  P6/mcc-P6/m.  Sets of  twofold axes 
belonging to case 23 may  be used as generat ing 
l inear  nets for R3 surfaces as well as for MC2, MC3 
and MC4 surfaces. These generating l inear  nets are 
also the l inear  skeletal nets of  all these surfaces and,  
as a consequence,  all these min imal  surfaces are 
complementary .  

According to the intersection group 
NE(P6/mcc) n N~(P6/m)  = P6/mmm(c/2)  each 

Fig. 2. The different multiple catenoids spanned between two nets 
46.12. 
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set of  twofold axes belonging to case 23 is compat ib le  
with two congruent  surfaces of  each of  the famil ies  
M C 2 ,  M C 3  and M C 4 ,  i.e. with six surfaces buil t  up 
from mult iple  catenoids.  Two congruent  surfaces can 
be mapped  onto another  by a mirror reflection m.. 
belonging to P 6 / m m m ( c / 2 ) .  

Fig. 3. Double catenoid, a surface patch of a minimal surface 
MC2 with symmetry P6/ mcc- P6/ m. 

? 

Fig. 4. Triple catenoid, a surface patch of a minimal surface MC3 
with symmetry P6/ mcc- P6/ m. 

5. Minimal balance surfaces M C 5  (double catenoids) 

Case 24 refers to square nets 44 of  twofold axes. Such 
sets of  twofold axes are defined by g roup-subgroup  
pairs of  46 types [cf. Table  1 of  Koch & Fischer 
(1988)]. 15 of  these types are compat ible  with 
tetragonal distorted P surfaces tP made up from 
catenoids bounded  by two squares. Fusion of  two 
such catenoids results in double  catenoids,  the surface 
patches of  M C 5  surfaces. Such a double  catenoid is 
bounded  by two concave 8-gons with one point  of  
self-contact each (cf. Fig. 6). 

M C 5  surfaces are compat ible  with group-  
subgroup pairs of  only three out of  the 15 types 
ment ioned  above: P 4 2 / m c m -  Cmmrn, P 4 2 m -  Crnm2, 
and P4222-C222.  In all three cases the square nets 
are formed by rotation axes .2., i.e. the nets are orien- 
ted parallel  to the coordinate  axes. 

The inherent  symmetry  of  M C 5  surfaces is 
P 4 2 / m c m - C m m m  and the generating l inear nets of  
these surfaces are also their  l inear skeletal nets. M C 5  
surfaces are complementa ry  to tP surfaces though the 
inherent  symmetr ies  of  such complementary  surfaces 
differ. Exceptions are those M C 5  surfaces which 
correspond to the l imit ing case of tP surfaces with 
cubic symmetry  (a=2U2c) .  As cubic P surfaces 
contain more twofold axes than tP surfaces, M C 5  
surfaces with a = 2~/2c are not complementary  to P 
surfaces. 

Each M C 5  surface consists of  double catenoids in 
two orientations.  Double  catenoids of the same layer 
are in paral lel  orientation,  those of adjacent  layers 
are in  different orientation. The genus of  M C 5  sur- 
faces equals  5. 

Each set of  square nets of  twofold aces (case 
24) is compat ib le  with eight congruent M C 5  sur- 
faces. According to the intersection group of 
the two Eucl idean normalizers  N E ( P 4 2 / m c m ) n  
N e ( C r n m m )  = P 4 / m m m ( [ a  - b]/2,  [a + b]/2,  c /2) ,  
four of  these M C 5  surfaces coincide in their inherent  
symmetry.  The corresponding symmetry operations,  

Fig. 5. Sextuple catenoid, a surface patch of a minimal surface Fig. 6. Double catenoid, a surface patch of a minimal surface 
MC4 with symmetry P6/ mcc- P6/ m. MC5 with symmetry P42/recta- Cmmm. 



ELKE K O C H  A N D  W E R N E R  F I S C H E R  173 

that map  the first MC5 surface onto the three 
equivalent  ones, are listed in Table 1. The four  other 
MC5 surfaces with the same l inear skeletal net belong 
to a pair P4f fmcm-Cmmm which is shifted against  
the original pair  by a vector (/00) (cf. Table  1). 

6. Minimal balance surfaces M C 6  and M C 7  (double 
and quadruple catenoids) 

Group- subgroup  pairs of  nine different types define 
tr iangular  nets 482 o f  twofold axes with tetragonal 
symmetry (angles 45, 45, 90°). Such sets of  twofold 
axes [case 25 in Table 1 of  Koch & Fischer (1988)] 
form the generat ing l inear  nets for R2 surfaces 
(Schoen, 1970) made up from catenoid-l ike surface 
patches. R2 surfaces are compat ible  with the fol- 
lowing five types of  g roup-subgroup  pairs: 14/mcm- 
P4/mbm, I422-P4212,  P4/mcc-P4/m,  P4 /nbm-  
P4bm, and P422-P4 .  

The catenoids of  an R2 surface may be combined  
in pairs to double  catenoids (cf. Figs. 7, 8). These are 
bounded  by two concave 6-gons which may be con- 
structed from two triangles with a common 90 ° vertex. 
Such double  catenoids occur as surface patches in 
two different orientat ions in min imal  balance  surfaces 
designated MC6. The double  catenoids of  each layer 
belong to both orientat ions and those from neigh- 
bouring layers with the same middle  axes show 
different orientations.  

MC6 surfaces and R2 surfaces are compat ible  with 
g roup-subgroup  pairs of  the same types. The inherent  
symmetry is 14 /mcm-P4/mbm in both cases and the 
generat ing l inear  nets coincide with. their  l inear 
skeletal nets. 

Each set of  482 nets of  twofold axes forms the 
generat ing l inear  net of  two congruent MC6 surfaces 
(as well as of  two R2 surfaces). According to the 
intersection group of  the two Euclidean normalizers  
NE(14/mcm) c~ NE(P4/mbm) = P4/mmm([a - b]/ 
2, [a + h i / 2 ,  c/2) ,  the two congruent min imal  sur- 
faces show the same inherent  symmetry.  They are 
mapped  onto another  by a reflection m.. out of  this 
intersection group. 

The catenoids of an R2 surface may also be com- 
bined to quadruple  catenoids (Figs. 7, 9). These are 
bounded  by concave 12-gons with one point  of  self- 
contact. Each 12-gon consists of  four triangles which 
meet in a common  45 ° vertex. Like the double 
catenoids the quadruple  catenoids occur in two 
orientations in the corresponding minimal  surfaces 
MC7. But in contrast to the double  catenoids in MC6 
surfaces all quadruple  catenoids within the same layer 
of  an MC7 surface are in parallel  orientation. Quad- 
ruple catenoids from adjacent  layers are oriented 
differently. 

As MC7 surfaces contain fewer translat ions than 
MC6 or R2 surfaces they are compat ible  with only 
two of the five types of  g roup-subgroup  pairs listed 
above, namely  P4/mcc-  P4/m and P422-  P4. Though 
the inherent  symmetry  P4/mcc -P4 /m  of  MC7 sur- 
faces differs from that of  MC6 or R2 surfaces, sur- 
faces of all three famil ies  are complementary.  The 
generat ing l inear  nets of  the MC7 surfaces are also 
their l inear skeletal nets. 

In contrast to the MC6 surfaces each set of  482 
nets of  twofold axes gives rise to four congruent  MC7 
surfaces. All four surfaces have identical  inherent  
symmetry as may be learned from the intersection 
group NE(P4 /mcc )n  NE(P4 /m)=  P 4 / m m m ( [ a -  

Fig. 7. The different multiple catenoids spanned between two 
nets 482 . 

Y 
Fig. 8. Double catenoid, a surface patch of a minimal surface Fig. 9. Quadruple catenoid, a surface patch of a minimal surface 

MC6 with symmetry I4/mcm- P4/ mbm. MC7 with symmetry P4/ mcc- P4/m. 
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b ]/ 2, [ a + b ]/ 2, c/2). These four surfaces are mapped 
onto another, for example, by the symmetry 
operations listed in Table 1. 

The genus is 9 for MC6 as well as for MC7 surfaces. 

7. Minimal surfaces oMC5 (double catenoids) 

Rectangular nets 44 of twofold axes (case 26) are 
defined by orthorhombic group-subgroup pairs of 33 
types. Only 12 of them are compatible with catenoid- 
like surface patches and with the respective minimal 
balance surfaces oP, a family of orthorhombically 
distorted P surfaces. 

Quite similarly as described above for MC5 sur- 
faces, the fusion of two such catenoids results in a 
double catenoid, a surface patch of an oMC 5 surface. 
The surfaces of the family oMC5 may be regarded 
as orthorhombically distorted MC5 surfaces. The 
family oMC5 comprises the surfaces of the family 
MC5 as a limiting case (a = b). 

oMC5 surfaces are compatible with group- 
subgroup pairs of only two of the 12 types mentioned 
above: Pccm-P2/m and P222-P2.  The inherent sym- 
metry of oMC5 surfaces is Pccm-P2/m. 

Analogously to MC5 surfaces each set of rec- 
tangular nets of twofold axes may generate eight 
congruent oMC5 surfaces; but in contrast to MC5 
surfaces all these oMC5 surfaces have identical inher- 
ent symmetry. They can be mapped onto another by 
symmetry operations of the intersection group 
N~(Pccm) c~ N E ( P 2 / m ) =  Pmmm(a/2, b/2, c/2) 
(cf. Table 1). 

8. Common properties of M C  surfaces 

For all minimal balance surfaces built up from multi- 
ple catenoids two layers of such catenoids exist per 
c-translation period. The central axes of the multiple 
catenoids are the same for the catenoids of different 

layers. Multiple catenoids from different layers with 
the same central axis are oriented differently. 

If the generating linear net of an MC surface 
consists of triangular nets of twofold axes six MC 
surfaces exist which are complementary to each other. 
In the case of quadrangular nets eight complementary 
MC surfaces occur. Each vertex of a triangle or a 
quadrangle corresponds to two congruent MC sur- 
faces. Equivalent vertices give rise to congruent sur- 
faces, non-equivalent ones to non-congruent surfaces. 
Each of these surfaces is complementary in addition 
to two congruent minimal surfaces built up from 
catenoids (except MC5 surfaces with a = 21/2c and 
oMC5 surfaces with a = b =21/2c). The use of the 
capital letter C for the designation of complicated 
new minimal surfaces which are complementary to 
known ones is therefore misleading [cf. Schoen 
(1970): C(H),  C(P), C(D) ;  Fischer & Koch (1987): 
C(S), C ( Y )  etc.], and should be avoided in the 
future. 

Minimal surfaces with multiple catenoids as sur- 
face patches exist only within a certain range of the 
axial ratio 0 <  c/a<_ c/a(max.). As for minimal sur- 
faces consisting of catenoids or branched catenoids 
the upper limits c/a(max.) are unknown. It has been 
shown by soap-film experiments that multiple 
catenoids allow a larger distance between neighbour- 
ing nets of twofold axes than the corresponding 
simple catenoids. 
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Abstract 

The Bloch-wave method for reflection diffraction 
problems, primarily electron diffraction as in reflec- 
tion high-energy electron diffraction (RHEED) and 
reflection electron microscopy (REM), is developed. 
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The basic Bloch-wave approach for surfaces is re- 
viewed, introducing the current flow concept which 
plays a major role both in understanding reflection 
diffraction and determining the allowed Bloch waves. 
This is followed by a brief description of the numeri- 
cal methods for obtaining the results including 
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